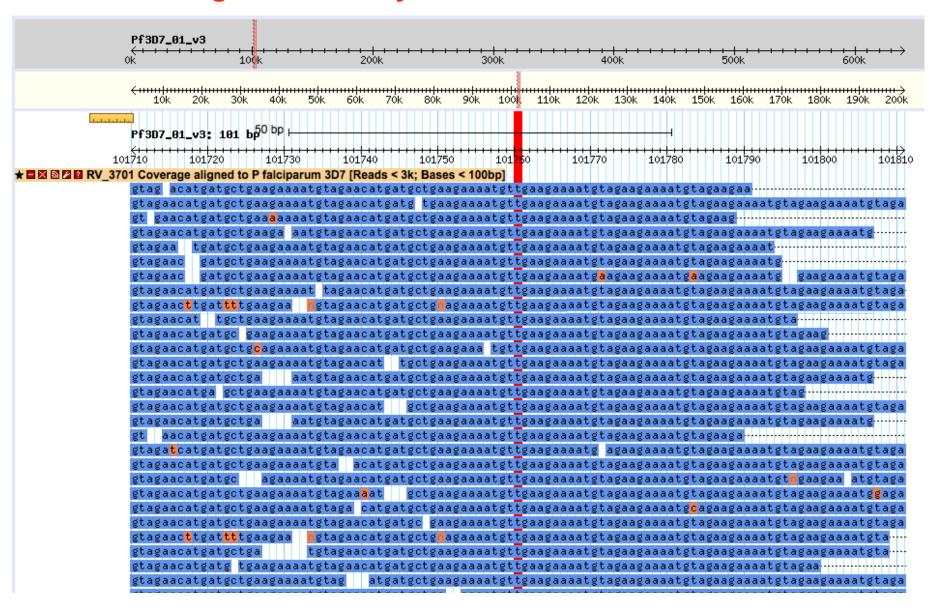
What are SNPs?

- Single Nucleotide Polymorphisms
 - DNA sequence differences distinguishing individuals within a species (allelic polymorphisms)
 - Diploid (aneuploid / polyploid) species may have allelic SNPs within an individual isolate (heterozygotes)
 - Note that SNPs are not the only form of allelic polymorphism, however ... but EuPathDB does not currently support insertions & deletions (indels)

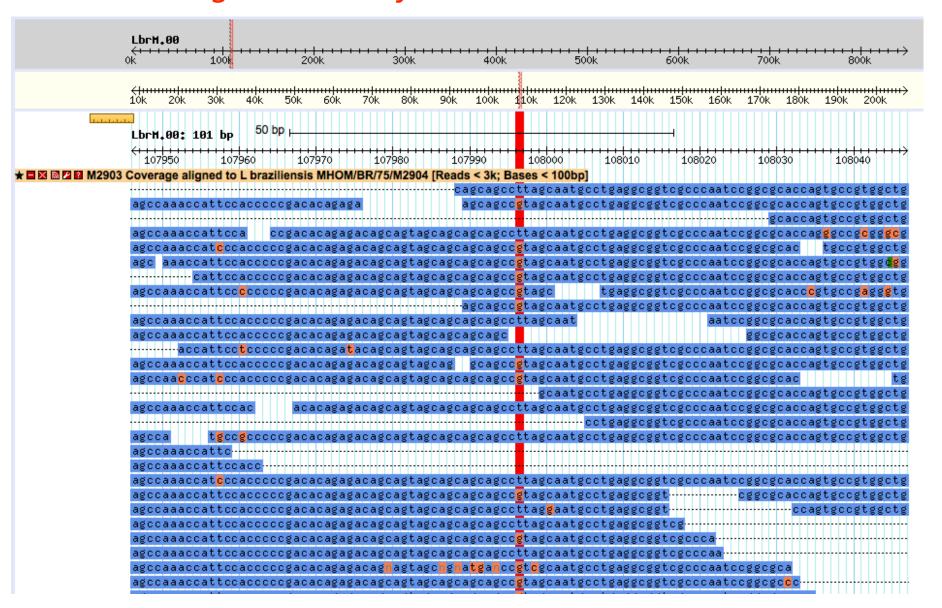
tgondii_gt1_chr tgondii_veg_chr tgondii_me49_chr neospora_chr tgondii_rh_chr	ATTCGATGCGCAGAGGAGCAACTACAGAGACGGAGCGGCACTGAAGCTTTTGCCAAAGAC ATTCGATGCGCAGAGGAGGAACTACAGAGACGGAGCGGCACTGAAGCTTTTGCCAAAGAC ATTCGATGCGCAGAGGAGGAACTACAGAGACGGAGCGGTACTGAAGCTTTTGCCAAAGAC ATTCGCTGCGCAGAAGAAGACGCAAAGACGCAGCGCACCGAGGCGTTCGCCAAAGAC	1129631
tgondii_gt1_chr tgondii_veg_chr tgondii_me49_chr neospora_chr tgondii_rh_chr	TTACTTCTCCTCTTGTCGGGGCTGAGGCCTCTTCCGCTGCGAAACAGGCTGGTAAGGCG TTGCTTCTCCTCCTCGTCGGGGCTGAGGCCTCTTCCGCTGCGAAACAGGCTGGTAAGGCG TTGCTTCTCCTCCTCGTCGGGGCTGAGGCCTCTTCCGCTGCGAAACAGGCTGGTAAGGCG CTTCTCCTCCTCCTCGTCGGGGCAGACCGCCTCGCCT	1129571
tgondii_gt1_chr tgondii_veg_chr tgondii_me49_chr neospora_chr tgondii_rh_chr	GCGGCGACGAAGGGTGGCTCTGAAGAGC GCGGCGACGAAGGGTGGCTCTGAAGAGC GCGGCGGCGACGAAGGGTGGCTCTGAAGAGC CCCGCGGCGACGAAGGGTGGCTCTGAAGAGC	1129540

SNPs in EuPathDB are derived from two sources


- Chip-based hybridization assays
 - Arrays can be designed to allow identification of SNP alleles in a given DNA sample.
 - PlasmoDB supports several such arrays, including 'barcode' arrays designed rapidly and inexpensively type field isolates
- Direct (deep) sequencing of isolate DNA
 - Reads are aligned to reference genome(s), and SNPs called based on differences
- What are isolates? explore on EuPathDB!

Homozygous / Heterozygous SNPs

- Ploidy of organism is critical
 - Replicative forms of Apicomplexans are haploid
 - Amoebae are diploid
 - Giardia is (approximately) tetraploid
 - African trypanosomes are diploid
 - Ploidy in *T. cruzi* is not entirely clear
 - Leishmania is (sometimes, partially) aneuploid
- Why does this matter for SNP calling/queries?
 - Read frequency is the defining parameter
- What does a heterzygous SNP look like?
 - http://tinyurl.com/o3tr9ly record page
 - http://tinyurl.com/ppcxmqo GBrowse view


In a haploid isolate -- all reads should be identical

• What might account for variation?

In a diploid isolate – expect a 50:50 ratio

What might account for variation?

Minor allele frequency

 10 isolates in this example ... 9 display one allele and one has a different allele. For example, at position 237,748 on P. falciparum chromosome 2, 9 isolates contain a T and one contains G.

Calling eukaryotic SNPs (in EuPathDB)

- Retrieve reads (pref. paired end), ideally from SRA).
- Align to reference using Bowtie2 (end-to-end).
- Realign around indels using GATK.
- Identify SNPs, indels and consensus sequence using VarScan (min depth 5, min frequency 20%).
- Every isolate alignment checked for every SNP ...
 infer comparisons between non-reference isolates if
 sufficient evidence to make statistically valid call (like
 reference, or not like reference).
- SNPs stored in database ... based on this reference.
- http://tinyurl.com/pebcdlz
 (SNP record page & link to alignment)

Why do we care? What can we do with SNPs?

- SNPs are genetic markers
 - Distinguish specific strains / isolates.
 - Enable fine structure mapping of phenotypes in genetic crosses or association studies.
- Identify SNPs based on a useful characteristics.
 - Within a group of isolates, based on:
 - allele frequency
 - chromosomal position (or position within genes)
 - other parameters
 - Compare two groups of isolates to identify distinctive SNPs.
- Identify Genes
 - Identify genes that are appear to be under selection based on SNP characteristics:
 - Number of SNPs (coding, non-coding, synonymous etc)
 - Ratio of non-synonymous / synonymous SNPs ... identifying genes under purifying or diversifying (balancing) selection.

Purifying vs Diversifying Selection

- Purifying selection: evolutionarily constraints serve to maintain primary amino acid sequence
 - Low ratio of non-synonymous / synonymous codons
 - Tend to be genes critical for basic metabolic processes (encoding enzymes, cell cycle related proteins, etc).
 - Note: very high A+T content in P. falciparum yields biased codon usage, skewing NS/S ratio.
- Diversifying selection: evolutionarily advantageous to change amino acid sequence rapidly
 - High non-synonymous / synonymous codon ratio
 - Tend to be genes encoding proteins recognized by the host immune response: surface antigens, etc
- Assessing NS/S requires good coverage, maximizing reliable SNP calls
- P. reichenowi a recent outgroup ... useful for highly conserved genes, but not those changing rapidly